Indian Statistical Institute Bangalore Centre B.Math (Hons.) III Year 2015-2016 First Semester Statistics III

Mid-semester Examination

Date:10.09.15

Answer as many questions as possible. The maximum you can score is 60.

All symbols have their usual meaning, unless stated otherwise.

State clearly the results you use.

- 1. Consider a random vector $X = (X_1, \dots X_p)'$.
 - (a) Find the 'best predictor' of X_1 among
 - (i) all functions and (ii) all linear functions of $X_2, \dots X_p$.
 - (b) Denote 'the best linear predictor' of X_1 obtained in (a) (ii) by $X_{1.2\cdots p}$. Let $R_{1.2\cdots p}=X_1-X_{1.2\cdots p}$.
 - (i) Find variance of $X_{1,2\cdots p}$.
 - (ii) Show that $R_{1,2\cdots p}$ is uncorrelated with every $X_j, j=2,\cdots p$.

$$[(3+4)+(2+3)=12]$$

- 2. (a) When is a random vector $X = (X_1, \dots X_p)'$ said to follow multivariate normal distribution?
 - (b) Suppose X follows $N_p(\mu, \Sigma)$. Find the distribution of $Y = B(k \times p) + b(k \times 1)$.
 - (c) Consider X of Q(b). Partition X as $\left[\begin{array}{c} X_1 \\ X_2 \end{array}\right]$ and μ and Σ accordingly.
 - (i) Show that X_1 and X_2 are independent if and only if $\Sigma_{12} = 0$.
 - (ii) Let $Y = X_1 + MX_2$. Assume that Σ_{22} is p.d. Show that Y is independent of X_2 if and only if $M = -\Sigma_{12}\Sigma_{22}^{-1}$.
 - (iii) Assuming that Σ_{22} is p.d, find the conditional distribution of X_1 , given $X_2 = t$.
 - (d) Consider p random variables $X_1, X_2, \dots X_p$. Fill in the blank in the following statement with justification.
 - "When the joint distribution of $X_1, X_2, \dots X_p$ is --, 'the best predictor' of X_1 , based on $X_2, \dots X_p$ coincides with the best predictor among all linear functions of $X_2, \dots X_p$ ".

$$[1+3+(3+3+5)+5=20]$$

- 3. (a) Define generalized (g-)inverse of a matrix.
 - (b) For an $m \times n$ matrix A show the following.
 - (i) The column space of A is the same as that of AA'.
 - (ii) $A'(AA')^-$ is a g-inverse of A. [1 + (3 + 3) = 7]

4. Consider the linear model

$$Y(n \times 1) = X(n \times p) \beta(p \times 1) + \varepsilon(n \times 1).$$

Here $E(\varepsilon) = 0$ and $Cov(\varepsilon) = \sigma^2 I_n$.

- (a) Suppose l is in \mathbb{R}^p . When is $l'\beta$ said to be estimable? Obtain the condition on l in terms of X matrix so that $l'\beta$ is estimable.
- (b) How does one find a least square estimate $(\hat{\beta})$ of β ? Is it always unique ?
- (c) Suppose $l'\beta$ is estimable. Show that $l'\hat{\beta}$ is always unique.
- (d) Define residual sum of squares (R_0^2) . Show that it can be expressed as Y'QY, where Q is a symmetric and idempotent matrix.
- (e) Assume ε to be normally distributed. Suppose $l'\beta$ is estimable. Show that $l'\hat{\beta}$ and R_0^2 are independent.

$$[(1+2)+(4+1)+3+(1+4)+6=22]$$

- 5. Suppose $X_i,\ i=1,2,\cdots n$ are i.i.d. standard normal variables. Let $X=\left[\begin{array}{ccc}X_1&X_2&\cdots&X_n\end{array}\right]'$.
 - (a) Suppose $Q_1 = X'AX$ and $Q_2 = X'BX$. If Q_1 and Q_2 follow χ^2 distributions with a and b degrees of freedom respectively and A B is non-negative definite, then show that $Q_1 Q_2$ also follows χ^2 distribution with a b degrees of freedom.
 - (b) Consider the quadratic forms $Q_1 = X'AX$ and $Q_2 = X'BX$. Prove that if AB = 0 then Q_1 and Q_2 are independently distributed.

$$[6 + 4 = 10]$$